Package: MicEco (via r-universe)

November 6, 2024

Version 0.9.19 Maintainer Jakob Russel <russel2620@gmail.com> **Description** Collection of functions for microbiome analyses. E.g. fitting neutral models and standardized effect sizes of phylogenetic beta diversities, and much more. **Depends** R (>= 3.2.5) Imports stats, utils, phyloseq, foreach, doSNOW, picante, vegan, snow, bbmle, Hmisc, abind, reshape2, eulerr, pheatmap License GPL (>= 3) | file LICENSE **Encoding** UTF-8 LazyData true RoxygenNote 7.2.0 Remotes bioc::release/phyloseq Repository https://metagenlab.r-universe.dev RemoteUrl https://github.com/Russel88/MicEco RemoteRef HEAD

Title Various functions for microbial community data

RemoteSha 91f8e6f5d67e0bfd018dc3b46da3994b1eadeb46

Contents

adonis_OmegaSq			•	•	•	•	•	•	•			•	•			•	•	•	•	•	•		•	•				2
clr																												3
comdist.par																												3
comdistnt.par																												4
community_rrna .																												5
gg_13_5_16S			•	•	•	•	•	•			•			•	•	•	•		•	•	•		•				•	5
neutral.fit	•	•	•	•	•	•	•	•			•			•	•	•	•		•	•	•		•				•	6
neutral.rand	•	•	•	•	•	•	•	•			•			•	•	•	•		•	•	•		•				•	6
proportionality .		•	•	•	•	•	•	•			•			•	•	•	•		•	•	•		•				•	7
ps_euler																					•							8

27

ps_pheatmap	. 9
ps_prune	. 10
ps_refactor	. 10
ps_tax_clean	. 11
ps_venn	. 11
rarefy_rrna	. 12
rcurve	. 13
ses.comdist	. 14
ses.comdist2	. 15
ses.comdistnt	. 17
ses.comdistnt2	. 18
ses.mntd.par	. 20
ses.mpd.par	. 21
ses.permtest	. 23
ses.UniFrac	. 24
UniFrac.multi	. 25
WdS.test	. 26

Index

adonis_OmegaSqCalculate (partial) Omega-squared (effect-size calculation) for PER-
MANOVA and add it to the input object

Description

Calculate (partial) Omega-squared (effect-size calculation) for PERMANOVA and add it to the input object

Usage

adonis_OmegaSq(adonisOutput, partial = TRUE)

Arguments

adonisOutput	An adonis object
partial	Should partial omega-squared be calculated (sample size adjusted). Default TRUE

Value

Original adonis object with the (partial) Omega-squared values added

CLR transformation of community matrix, with multiplicative zero replacement

Description

This function performs a CLR transformation on the input. Prior to transformation it does a multiplicative zero replacement, which adds a pseudocount, but corrects the non-zero abundances such that log-ratios between non-zero elements are unchanged after correction.

Usage

clr(mat, delta = 1)

Arguments

mat	A community matrix with features as rows
delta	The pseudocount to exchange zeroes with. Zero-correction is multiplicative such that the log-ratios between any entirely non-zero features will not be affected by the pseudocount.

Value

CLR transformed community matrix

comdist.par	Inter-community mean pairwise distance	
-------------	--	--

Description

Parallel calculation of MPD (mean pairwise distance) separating taxa in two communities, a measure of phylogenetic beta diversity

Usage

```
comdist.par(comm, dis, abundance.weighted = FALSE, cores = 1, progress = TRUE)
```

Arguments

comm	Community data matrix with samples as rows				
dis	Distance matrix (generally a phylogenetic distance matrix)				
abundance.weighted					
	Should mean nearest taxon distances for each species be weighted by species abundance? (default = FALSE)				
cores	How many cores should be used for parallel computing				
progress	Show a progress bar				

clr

Value

A distance matrix of MPD values

comdistnt.par Inter-community mean nearest taxon distance

Description

Parallel calculation of MNTD (mean nearest taxon distance) separating taxa in two communities, a measure of phylogenetic beta diversity

Usage

```
comdistnt.par(
   comm,
   dis,
   abundance.weighted = FALSE,
   exclude.conspecifics = FALSE,
   cores = 1,
   progress = TRUE
)
```

Arguments

comm	Community data matrix with samples as rows					
dis	Distance matrix (generally a phylogenetic distance matrix)					
abundance.weighted						
	Should mean nearest taxon distances for each species be weighted by species abundance? (default = FALSE)					
exclude.conspec	ifics					
	Should conspecific taxa in different communities be exclude from MNTD calculations? (default = FALSE)					
cores	How many cores should be used for parallel computing'					
progress	Show a progress bar					

Value

A distance matrix of MNTD values

community_rrna

Description

Calculate the average 16S rRNA copy number for each sample in an OTU table

Usage

```
community_rrna(x, copy.database = "v13.5", weighted = TRUE)
```

Arguments

x	A phyloseq object OR an OTU-table with taxa as rows and OTU names as row- names. OTUs should be picked against the Greengenes v13.5 database, unless a another copy number database is provided.
copy.database	What Greengenes database version was used to find OTUs. Atm only "v13.5" is available. Alternatively, A dataframe with two variables: "ID" is the OTU id matched by rownames in x and "Copy" is the copy number.
weighted	Logical. Should the average copy number be weighted by the relative abundances of the OTUs? If not, it is adviced to rarefy the otu-table first if there are large differences in sample reads.

Value

A dataframe with an average copy number for each sample

gg_13_5_16S	16S copy numbers for GreenGenes	13_5 database OTUs
-------------	---------------------------------	--------------------

Description

Precalculated for the PICRUSt pipeline (https://picrust.github.io/picrust/picrust_precalculated_files.html)

neutral.fit

Description

Fit neutral model developed by Sloan et al. (2006, Environ Microbiol 8(4):732-740) and implemented by Burns et al. (2015, ISME J 10(3):655-664).

Usage

neutral.fit(otu)

Arguments

otu

An OTU-table with taxa as columns and samples as rows.

Value

A list of length two; first element contains fit statistics, the second element contains predictions.

neutral.rand	Fit Sloan et al. (2006) Neutral Model several times
--------------	---

Description

Fit neutral model developed by Sloan et al. (2006, Environ Microbiol 8(4):732-740) and implemented by Burns et al. (2015, ISME J 10(3):655-664) several times on ramdomly picked samples and with 16S rRNA gene copy number corrected rarefaction.

Usage

```
neutral.rand(
   data,
   n = NULL,
   s = NULL,
   rRNA = NULL,
   rn = NULL,
   cores = 1,
   naming = NULL
)
```

proportionality

Arguments

data	A phyloseq object
n	Integer. Number of times to repeat analysis
S	Integer. Number of random samples to for each repetition.
rRNA	What Greengenes database version was used to find OTUs. Atm only "v13.5" is available. Alternatively, A dataframe with two variables: "ID" is the OTU id matched by names in x and "Copy" is the copy number.
rn	Integer. Number of reads to sample for rarefaction
cores	Integer. Number of cores to use for parallel computing.
naming	Optional. A list for naming the output e.g. list(Time="1 Week",Type="Gut")

Value

A list of length two; first element contains fit statistics, the second element contains predictions.

proportionality	Calculate proportionality between all pairs of OTUs, for network
	analysis

Description

Calculate proportionality as proposed by Lovell et al. 2016 Proportionality: a valid alternative to correlation for relative data

Usage

proportionality(x, delta = 1)

Arguments

х	An otu-table with OTUs as rows OR a phyloseq object
delta	The pseudocount to exchange zeroes with. Zero-correction is multiplicative such that the proportionality between any entirely non-zero OTUs will not be affected by the pseudocount.

Value

The network association matrix with proportionality values

ps_euler

Description

Make Euler diagram of shared taxa (ASVs, OTUs) across sample groups from a phyloseq object. Overlap can be weighted by relative abundance

Usage

```
ps_euler(
   ps,
   group,
   fraction = 0,
   shape = "circle",
   weight = FALSE,
   relative = TRUE,
   plot = TRUE,
   ...
)
```

Arguments

ps	A phyloseq object
group	The grouping factor. Should match variable in sample_data(ps)
fraction	The fraction (0 to 1) of samples in a group in which the taxa should be present to be included in the count.
shape	Shape of the plot "circle" or "ellipse"?
weight	If TRUE, the overlaps are weighted by abundance
relative	Should abundances be made relative
plot	If TRUE return a plot, if FALSE return a list with shared and unique taxa
	Additional arguments

Details

Any further arguments to this function are passed to the plot.euler function from the eulerr package. This can be used to change colors, fonts, and other graphical parameters. For example: $ps_euler(phy, "Time", quantities = list(type=c("percent","counts"), font = 2), labels = list(cex = 2), col = "red", fill = c("red","blue","green"))$

Value

An euler plot

ps_pheatmap

Description

Make pheatmap directly from a phyloseq object, including agglomoration and filtering. Default color map is viridis with absent taxa as black.

Usage

```
ps_pheatmap(
   ps,
   annot_samp = NULL,
   annot_taxa = NULL,
   relative = TRUE,
   log10 = TRUE,
   tax_agg = NULL,
   order_taxa = TRUE,
   min_samples = 1,
   min_reads = 1,
   min_abundance = 0,
   label_rank = NULL,
   color = c("black", viridis::viridis(10)),
   ...
)
```

ps	A phyloseq object
annot_samp	Sample variables to annotate with
annot_taxa	Taxa variables to annotate with
relative	If TRUE, abundances total sum scaled. Default TRUE
log10	If TRUE, log10 transform abundances. Default TRUE
tax_agg	Taxa rank to agglomorate. Default NULL
order_taxa	If TRUE, taxa are ordered from most to least abundant. Default TRUE
<pre>min_samples</pre>	Minimum number of samples the features should be present in. Default 1
min_reads	Minimum number of total reads the features should have. Default 1
<pre>min_abundance</pre>	Minimum mean relative abundance features should have. Default 0
label_rank	Taxa rank to label the taxa. If NULL will label by taxa_names(ps). Default NULL
color	Color palette. Default viridis with absent
	Additional arguments to pheatmap function

Value

A pheatmap

ps_prune

Prune taxa from phyloseq object by their prevalence or abundance

Description

Prune taxa from phyloseq object by their prevalence or abundance

Usage

```
ps_prune(data, min.samples = 0, min.reads = 0, min.abundance = 0)
```

Arguments

data	phyloseq object.
min.samples	Minimum number of samples the features should be present in. Default 0
min.reads	Minimum number of total reads the features should have. Default 0
min.abundance	Minimum mean relative abundance features should have. Default 0

Value

Similar to input, but with features not reaching the criteria given grouped as "Others"

ps_refactor

Relevel the Sample variable in a psmelted phyloseq object

Description

Relevel the Sample variable in a psmelted phyloseq object, such that similar samples are plotted together with ggplot barcharts

Usage

ps_refactor(psmelted, ...)

psmelted	A phyloseq object melted into a data.frame with psmelt
	Arguments passed to hclust

ps_tax_clean

Clean tax_table such that NAs are replaced with names of the most specific known taxonomy prefixed with the rank.

Description

Example: An OTU is annotated as Proteobacteria in the Phylum rank, but NAs in the more specific ranks. All annotations below Phylum for this OTU will be replaced with Phylum_Proteobacteria.

Usage

ps_tax_clean(data)

Arguments

data

phyloseq or tax_table object.

Value

Similar to input, but with NAs replaced in the tax_table

ps_venn

Make Venn diagram of shared taxa (ASVs, OTUs) across sample groups

Description

Make Venn diagram of shared taxa (ASVs, OTUs) across sample groups from a phyloseq object. Overlap can be weighted by relative abundance #' Any further arguments to this function are passed to the plot.venn function from the eulerr package. This can be used to change colors, fonts, and other graphical parameters. For example: $ps_venn(phy, "Time", quantities = list(type=c("percent", "counts"), font = 2), labels = list(cex = 2), col = "red", fill = c("red", "blue", "green"))$

Usage

```
ps_venn(
   ps,
   group,
   fraction = 0,
   weight = FALSE,
   relative = TRUE,
   plot = TRUE,
   ...
)
```

Arguments

ps	A phyloseq object
group	The grouping factor. Should match variable in sample_data(ps)
fraction	The fraction (0 to 1) of samples in a group in which the taxa should be present to be included in the count.
weight	If TRUE, the overlaps are weighted by abundance
relative	Should abundances be made relative
plot	If TRUE return a plot, if FALSE return a list with shared and unique taxa
	Additional arguments

Value

An venn plot

rarefy_rrna	Rarefy and normalize based on 16S rRNA copy numbers

Description

Rarefy an OTU-table with the probability of the inverse 16S rRNA copy numbers: The result is a normalized AND copy number corrected OTU-table.

Usage

```
rarefy_rrna(
    x,
    reads,
    copy.database = "v13.5",
    seed = NULL,
    trim = FALSE,
    replace = FALSE
)
rarefy_rrna.matrix(x, reads, copy.database, seed = NULL, trim, replace)
rarefy_rrna.phyloseq(x, reads, copy.database, seed = NULL, trim, replace)
```

х	A phyloseq object OR an OTU-table with taxa as columns and OTU names
	as colnames. OTUs should be picked against the Greengenes v13.5 database,
	unless another copy number database is provided.
reads	Number of reads to sample.

rcurve

copy.database	What Greengenes database version was used to find OTUs. Atm only "v13.5" is available. Alternatively, A dataframe with two variables: "ID" is the OTU id matched by names in x and "Copy" is the copy number.
seed	Random seed for sampling.
trim	Should samples with less than the set amount of reads be trimmed away?
replace	Should reads be sampled with replacement? Default FALSE. If FALSE, rRNA copy numbers will have small effect if the rarefied depth is close to the actual depth. If TRUE, some taxa can end up with more reads in the rarefied matrix that they had in the input.

Value

A rarefied otu-table

rcurve

Rarefaction curve on phyloseq object Theoretical richness with vegan's rarefy function

Description

Rarefaction curve on phyloseq object Theoretical richness with vegan's rarefy function

Usage

rcurve(physeq, subsamp = 10^c(1:5), trim = TRUE, add_sample_data = TRUE)

physeq	phyloseq object
subsamp	Vector of number of reads to subsample
trim	Remove richness estimations from subsamples larger than the library size
add_sample_data	
	Add sample data to data.frame

```
ses.comdist
```

Description

Standardized effect size of MPD (mean pairwise distance) separating taxa in two communities, a measure of phylogenetic beta diversity

Usage

```
ses.comdist(
   samp,
   dis,
   null.model = c("taxa.labels", "richness", "frequency", "sample.pool",
        "phylogeny.pool", "independentswap", "trialswap"),
        abundance.weighted = FALSE,
   runs = 999,
        iterations = 1000,
        cores = 1
)
```

Arguments

samp	Community data matrix with samples as rows
dis	Distance matrix (generally a phylogenetic distance matrix)
null.model	Null model to use (see Details section for description)
abundance.weighted	
	Should mean nearest taxon distances for each species be weighted by species abundance? (default = FALSE)
runs	Number of randomizations
iterations	Number of iterations to use for each randomization (for independent swap and trial null models)
cores	Number of cores to use for parallel computing

Details

Currently implemented null models (arguments to null.model):

- taxa.labels Shuffle distance matrix labels (across all taxa included in distance matrix)
- richness Randomize community data matrix abundances within samples (maintains sample species richness)
- frequency Randomize community data matrix abundances within species (maintains species occurence frequency)
- sample.pool Randomize community data matrix by drawing species from pool of species occurring in at least one community (sample pool) with equal probability

ses.comdist2

- phylogeny.pool- Randomize community data matrix by drawing species from pool of species occurring in the distance matrix (phylogeny pool) with equal probability
- independentswap Randomize community data matrix with the independent swap algorithm (Gotelli 2000) maintaining species occurrence frequency and sample species richness
- trialswap Randomize community data matrix with the trial-swap algorithm (Miklos & Podani 2004) maintaining species occurrence frequency and sample species richness

Value

A list of results:

- ntaxa Number of taxa in community
- · comdist.obs Observed mpd between communities
- · comdist.rand.mean Mean mpd between null communities
- · comdist.rand.sd Standard deviation of mpd between null communities
- · comdist.obs.rank Rank of observed mpd vs. null mpd
- comdist.obs.z Standardized effect size of mpd vs. null mpd (= (comdist.obs comdist.rand.mean) / comdist.rand.sd, equivalent to -betaNRI)
- comdist.obs.p P-value (quantile) of observed mpd vs. null communities (= comdist.obs.rank / runs + 1)
- runs Number of randomizations

ses.comdist2 Standardized effect size of inter-community MPD (betaMPD, betaNRI)

Description

Standardized effect size of MPD (mean pairwise distance) separating taxa in two communities, a measure of phylogenetic beta diversity

Usage

```
ses.comdist2(
   samp,
   dis,
   method = "quasiswap",
   fixedmar = "both",
   shuffle = "both",
   strata = NULL,
   mtype = "count",
   burnin = 0,
   thin = 1,
   abundance.weighted = FALSE,
   runs = 999,
   cores = 1
)
```

Arguments

samp	Community data matrix with samples as rows
dis	Distance matrix (generally a phylogenetic distance matrix)
method	Character for method used for the swap algorithm ("swap", "tswap", "quasiswap", "backtrack"). If NULL no swap algorithm is applied (uses permatfull from vegan). If mtype="count" the "quasiswap", "swap", "swsh" and "abuswap" methods are available (see details).
fixedmar	Character, stating which of the row/column sums should be preserved ("none", "rows", "columns", "both").
shuffle	Character, indicating whether individuals ("ind"), samples ("samp") or both ("both") should be shuffled, see details.
strata	Numeric vector or factor with length same as nrow(m) for grouping rows within strata for restricted permutations. Unique values or levels are used.
mtype	Matrix data type, either "count" for count data, or "prab" for presence-absence type incidence data.
burnin	Number of null communities discarded before proper analysis in sequential ("swap", "tswap") methods.
thin	Number of discarded permuted matrices between two evaluations in sequential ("swap", "tswap") methods.
abundance.weighted	
	Should mean nearest taxon distances for each species be weighted by species abundance? (default = FALSE)
runs	Number of randomizations
cores	Number of cores to use for parallel computing

Details

See permat (vegan) for detailed options

Value

A list of results:

- ntaxa Number of taxa in community
- comdist.obs Observed mpd between communities
- comdist.rand.mean Mean mpd between null communities
- comdist.rand.sd Standard deviation of mpd between null communities
- · comdist.obs.rank Rank of observed mpd vs. null mpd
- comdist.obs.z Standardized effect size of mpd vs. null mpd (= (comdist.obs comdist.rand.mean) / comdist.rand.sd, equivalent to -betaNRI)
- comdist.obs.p P-value (quantile) of observed mpd vs. null communities (= comdist.obs.rank / runs + 1)
- runs Number of randomizations

ses.comdistnt

Description

Standardized effect size of MNTD (mean nearest taxon distance) separating taxa in two communities, a measure of phylogenetic beta diversity

Usage

```
ses.comdistnt(
   samp,
   dis,
   null.model = c("taxa.labels", "richness", "frequency", "sample.pool",
      "phylogeny.pool", "independentswap", "trialswap"),
   abundance.weighted = FALSE,
   exclude.conspecifics = FALSE,
   runs = 999,
   iterations = 1000,
   cores = 1
)
```

Arguments

samp	Community data matrix with samples as rows	
dis	Distance matrix (generally a phylogenetic distance matrix)	
null.model	Null model to use (see Details section for description)	
abundance.weig	hted	
	Should mean nearest taxon distances for each species be weighted by species abundance? (default = FALSE)	
exclude.conspecifics		
	Should conspecific taxa in different communities be exclude from MNTD cal- culations? (default = FALSE)	
runs	Number of randomizations	
iterations	Number of iterations to use for each randomization (for independent swap and trial null models)	
cores	Number of cores to use for parallel computing	

Details

Currently implemented null models (arguments to null.model):

- taxa.labels Shuffle distance matrix labels (across all taxa included in distance matrix)
- richness Randomize community data matrix abundances within samples (maintains sample species richness)

- frequency Randomize community data matrix abundances within species (maintains species occurence frequency)
- sample.pool Randomize community data matrix by drawing species from pool of species occurring in at least one community (sample pool) with equal probability
- phylogeny.pool- Randomize community data matrix by drawing species from pool of species occurring in the distance matrix (phylogeny pool) with equal probability
- independentswap Randomize community data matrix with the independent swap algorithm (Gotelli 2000) maintaining species occurrence frequency and sample species richness
- trialswap Randomize community data matrix with the trial-swap algorithm (Miklos & Podani 2004) maintaining species occurrence frequency and sample species richness

Value

A list of results:

- ntaxa Number of taxa in community
- · comdistnt.obs Observed mntd between communities
- · comdistnt.rand.mean Mean mntd between null communities
- · comdistnt.rand.sd Standard deviation of mntd between null communities
- · comdistnt.obs.rank Rank of observed mntd vs. null mntd
- comdistnt.obs.z Standardized effect size of mntd vs. null mntd (= (comdistnt.obs comdistnt.rand.mean) / comdistnt.rand.sd, equivalent to -betaNTI)
- comdistnt.obs.p P-value (quantile) of observed mntd vs. null communities (= comdistnt.obs.rank / runs + 1)
- runs Number of randomizations

ses.comdistnt2 Standardized effect size of inter-community MNTD (betaMNTD, betaNTI)

Description

Standardized effect size of MNTD (mean nearest taxon distance) separating taxa in two communities, a measure of phylogenetic beta diversity

Usage

```
ses.comdistnt2(
   samp,
   dis,
   method = "quasiswap",
   fixedmar = "both",
   shuffle = "both",
   strata = NULL,
```

ses.comdistnt2

```
mtype = "count",
burnin = 0,
thin = 1,
abundance.weighted = FALSE,
exclude.conspecifics = FALSE,
runs = 999,
cores = 1
```

Arguments

samp	Community data matrix with samples as rows	
dis	Distance matrix (generally a phylogenetic distance matrix)	
method	Character for method used for the swap algorithm ("swap", "tswap", "quasiswap", "backtrack"). If NULL no swap algorithm is applied (uses permatfull from vegan). If mtype="count" the "quasiswap", "swap", "swsh" and "abuswap" methods are available (see details).	
fixedmar	Character, stating which of the row/column sums should be preserved ("none", "rows", "columns", "both").	
shuffle	Character, indicating whether individuals ("ind"), samples ("samp") or both ("both") should be shuffled, see details.	
strata	Numeric vector or factor with length same as nrow(m) for grouping rows within strata for restricted permutations. Unique values or levels are used.	
mtype	Matrix data type, either "count" for count data, or "prab" for presence-absence type incidence data.	
burnin	Number of null communities discarded before proper analysis in sequential ("swap", "tswap") methods.	
thin	Number of discarded permuted matrices between two evaluations in sequential ("swap", "tswap") methods.	
abundance.weigh	nted	
	Should mean nearest taxon distances for each species be weighted by species abundance? (default = FALSE)	
exclude.conspec	cifics	
	Should conspecific taxa in different communities be exclude from MNTD cal- culations? (default = FALSE)	
runs	Number of randomizations	
cores	Number of cores to use for parallel computing	

Details

See permat (vegan) for detailed options

Value

A list of results:

- ntaxa Number of taxa in community
- · comdistnt.obs Observed mntd between communities
- · comdistnt.rand.mean Mean mntd between null communities
- · comdistnt.rand.sd Standard deviation of mntd between null communities
- comdistnt.obs.rank Rank of observed mntd vs. null mntd
- comdistnt.obs.z Standardized effect size of mntd vs. null mntd (= (comdistnt.obs comdistnt.rand.mean) / comdistnt.rand.sd, equivalent to -betaNTI)
- comdistnt.obs.p P-value (quantile) of observed mntd vs. null communities (= comdistnt.obs.rank / runs + 1)
- runs Number of randomizations

ses.mntd.par Standardized effect size of MNTD

Description

Parallel calculation of standardized effect size of mean nearest taxon distances in communities. When used with a phylogenetic distance matrix, equivalent to -1 times the Nearest Taxon Index (NTI).

Usage

```
ses.mntd.par(
   samp,
   dis,
   null.model = c("taxa.labels", "richness", "frequency", "sample.pool",
        "phylogeny.pool", "independentswap", "trialswap"),
        abundance.weighted = FALSE,
   runs = 999,
   iterations = 1000,
   cores = 1
)
```

samp	Community data matrix with samples as rows	
dis	Distance matrix (generally a phylogenetic distance matrix)	
null.model	Null model to use (see Details section for description)	
abundance.weighted		
	Should mean nearest taxon distances for each species be weighted by species abundance? (default = FALSE)	
runs	Number of randomizations	
iterations	Number of iterations to use for each randomization (for independent swap and trial null models)	
cores	Number of cores to use for parallel computing	

ses.mpd.par

Details

Faster than ses.mntd from picante when there are many samples and taxa.

Currently implemented null models (arguments to null.model):

- taxa.labels Shuffle distance matrix labels (across all taxa included in distance matrix)
- richness Randomize community data matrix abundances within samples (maintains sample species richness)
- frequency Randomize community data matrix abundances within species (maintains species occurence frequency)
- sample.pool Randomize community data matrix by drawing species from pool of species occurring in at least one community (sample pool) with equal probability
- phylogeny.pool- Randomize community data matrix by drawing species from pool of species occurring in the distance matrix (phylogeny pool) with equal probability
- independentswap Randomize community data matrix with the independent swap algorithm (Gotelli 2000) maintaining species occurrence frequency and sample species richness
- trialswap Randomize community data matrix with the trial-swap algorithm (Miklos & Podani 2004) maintaining species occurrence frequency and sample species richness

Value

A data frame of results for each community

- ntaxaNumber of taxa in community
- mntd.obsObserved mntd in community
- · mntd.rand.meanMean mntd in null communities
- mntd.rand.sdStandard deviation of mntd in null communities
- mntd.obs.rankRank of observed mntd vs. null communities
- mntd.obs.zStandardized effect size of mntd vs. null communities (= (mntd.obs mntd.rand.mean) / mntd.rand.sd, equivalent to -NRI)
- mntd.obs.pP-value (quantile) of observed mntd vs. null communities (= mntd.obs.rank / runs + 1)
- runsNumber of randomizations

ses.mpd.par

Standardized effect size of MPD

Description

Parallel calculation of standardized effect size of mean pairwise distances in communities. When used with a phylogenetic distance matrix, equivalent to -1 times the Nearest Relative Index (NRI).

Usage

```
ses.mpd.par(
   samp,
   dis,
   null.model = c("taxa.labels", "richness", "frequency", "sample.pool",
        "phylogeny.pool", "independentswap", "trialswap"),
        abundance.weighted = FALSE,
   runs = 999,
        iterations = 1000,
        cores = 1
)
```

Arguments

samp	Community data matrix with samples as rows	
dis	Distance matrix (generally a phylogenetic distance matrix)	
null.model	Null model to use (see Details section for description)	
abundance.weig	nted	
	Should mean nearest taxon distances for each species be weighted by species abundance? (default = FALSE)	
runs	Number of randomizations	
iterations	Number of iterations to use for each randomization (for independent swap and trial null models)	
cores	Number of cores to use for parallel computing	

Details

Faster than ses.mpd from picante when there are many samples and taxa.

Currently implemented null models (arguments to null.model):

- taxa.labels Shuffle distance matrix labels (across all taxa included in distance matrix)
- richness Randomize community data matrix abundances within samples (maintains sample species richness)
- frequency Randomize community data matrix abundances within species (maintains species occurence frequency)
- sample.pool Randomize community data matrix by drawing species from pool of species occurring in at least one community (sample pool) with equal probability
- phylogeny.pool- Randomize community data matrix by drawing species from pool of species occurring in the distance matrix (phylogeny pool) with equal probability
- independentswap Randomize community data matrix with the independent swap algorithm (Gotelli 2000) maintaining species occurrence frequency and sample species richness
- trialswap Randomize community data matrix with the trial-swap algorithm (Miklos & Podani 2004) maintaining species occurrence frequency and sample species richness

22

ses.permtest

Value

A data frame of results for each community

- ntaxaNumber of taxa in community
- mpd.obsObserved mpd in community
- mpd.rand.meanMean mpd in null communities
- · mpd.rand.sdStandard deviation of mpd in null communities
- mpd.obs.rankRank of observed mpd vs. null communities
- mpd.obs.zStandardized effect size of mpd vs. null communities (= (mpd.obs mpd.rand.mean) / mpd.rand.sd, equivalent to -NRI)
- mpd.obs.pP-value (quantile) of observed mpd vs. null communities (= mpd.obs.rank / runs + 1)
- runsNumber of randomizations

ses.permtest

Permutation test of z-matrix

Description

Permutation test of z-matrix from ses.comdist(2), ses.comdistnt and ses.UniFrac. Test if means within or between groups is higher or lower than the overall mean of the matrix

Usage

ses.permtest(zmat, sampleGroups, R = 10000)

Arguments

zmat	Symmetric matrix with z-values
sampleGroups	Vector with the grouping of the samples in the same order as in zmat
R	Number of permutations

Value

A dataframe with p-values (pval), fdr corrected p-values (pval.adj), and average z-values (avg) for each group and combination of groups.

ses.UniFrac

Description

Standardized effect size of unifrac

Usage

```
ses.UniFrac(
   physeq,
   method = "taxa.labels",
   fixedmar = "both",
   shuffle = "both",
   strata = NULL,
   mtype = "count",
   burnin = 0,
   thin = 1,
   weighted = TRUE,
   normalized = TRUE,
   runs = 99,
   cores = 1
)
```

physeq	phyloseq-class, containing at minimum a phylogenetic tree and otu table
method	"taxa.labels" shuffles labels in phylogenetic tree (Ignores fixedmar, shuffle, strata, mtype). If NULL then no swap algorithm is applied (i.e. uses permatfull from vegan). Else the method used for the swap algorithm ("swap", "tswap", "quasiswap", "backtrack"). If mtype="count" the "quasiswap", "swap", "swsh" and "abuswap" methods are available (see details).
fixedmar	Character, stating which of the row/column sums should be preserved ("none", "rows", "columns", "both").
shuffle	Character, indicating whether individuals ("ind"), samples ("samp") or both ("both") should be shuffled.
strata	Numeric vector or factor for grouping samples within strata for restricted per- mutations. Unique values or levels are used.
mtype	Matrix data type, either "count" for count data, or "prab" for presence-absence type incidence data.
burnin	Number of null communities discarded before proper analysis in sequential ("swap", "tswap") methods.
thin	Number of discarded permuted matrices between two evaluations in sequential ("swap", "tswap") methods.
weighted	Should unifrac be weighted by species abundance? (default = TRUE)

UniFrac.multi

normalized	(Optional). Logical. Should the output be normalized such that values ra	
	from 0 to 1 independent of branch length values? Default is TRUE. Note that	
	(unweighted) UniFrac is always normalized by total branch-length, and so this value is ignored when weighted == FALSE.	
runs	Number of randomizations	
cores	Number of cores to use for UniFrac of null communities. Default is 1	

Details

See permat (vegan) for detailed options on permutation

Value

A list of results:

- unifrac.obs Observed unifrac between communities
- unifrac.rand.mean Mean unifrac between null communities
- unifrac.rand.sd Standard deviation of unifrac between null communities
- unifrac.obs.rank Rank of observed unifrac vs. null unifrac
- unifrac.obs.z Standardized effect size of unifrac vs. null unifrac (= (unifrac.obs unifrac.rand.mean) / unifrac.rand.sd)
- unifrac.obs.p P-value (quantile) of observed unifrac vs. null communities (= unifrac.obs.rank / runs + 1)

UniFrac.multi Run	n UniFrac <i>multiple times in</i>	parallel and take the average
-------------------	------------------------------------	-------------------------------

Description

With unrooted phylogenies UniFrac sets the root randomly on the tree. The position of the root affects the results. The function runs UniFrac multiple times, with different roots, and takes the average to smooth potential bias.

Usage

```
UniFrac.multi(physeq, R = 100, seed = 42, cores = 1, ...)
```

physeq	Phyloseq object. Required
R	Number of times to repeat calculation. Default 100
seed	Random seed for reproducibility. Default 42
cores	Number of cores to use for parallel computing. Default 1 aka not parallel
	Additional arguments passed to the UniFrac function

A distance object with the average UniFrac distances

WdS.test	Permutation test of Wd* - robust distance-based multivariate analysis
	of variance

Description

Robust distance-based multivariate analysis of variance (https://doi.org/10.1186/s40168-019-0659-9)

Usage

WdS.test(dm, f, nrep = 999, strata = NULL)

Arguments

dm	Distance matrix
f	Factor
nrep	Number of permutations
strata	Factor for permuting in strata

Details

This code is taken from https://github.com/alekseyenko/WdStar/

Value

A list with a p-value, test statitic, and number of permutation

26

Index

* MNTD comdistnt.par,4 ses.comdistnt, 17 ses.comdistnt2, 18 ses.mntd.par, 20 * MPD comdist.par, 3 ses.comdist, 14 ses.comdist2,15 ses.mpd.par, 21 * NRI ses.mpd.par, 21 * NTIses.mntd.par, 20 * association proportionality, 7 * bMNTD comdistnt.par,4 ses.comdistnt, 17 ses.comdistnt2, 18 * bMPD comdist.par, 3 ses.comdist, 14 ses.comdist2,15 * bNRI comdist.par, 3 ses.comdist.14 ses.comdist2, 15 * bNTI comdistnt.par, 4 ses.comdistnt, 17 ses.comdistnt2.18 * betaMNTD comdistnt.par,4 ses.comdistnt, 17 ses.comdistnt2, 18 * betaMPD comdist.par, 3 ses.comdist, 14

ses.comdist2,15 * betaNRI comdist.par,3 ses.comdist, 14 ses.comdist2,15 * betaNTI comdistnt.par,4 ses.comdistnt, 17 ses.comdistnt2, 18 * clr clr,3 * data gg_13_5_16S, 5 * diagram ps_euler, 8 ps_venn, 11 * distance WdS.test, 26 * euler ps_euler, 8 * network proportionality, 7 * neutral neutral.fit,6 neutral.rand, 6 * normalize rarefy_rrna, 12 * pseudocount clr, 3* rarefy rarefy_rrna, 12 * rrna community_rrna, 5 rarefy_rrna, 12 * ses ses.comdist, 14 ses.comdist2,15 ses.comdistnt, 17 ses.comdistnt2, 18

INDEX

```
ses.mntd.par, 20
    ses.mpd.par, 21
    ses.UniFrac, 24
* unifrac
    ses.UniFrac, 24
* venn
    ps_venn, 11
adonis_OmegaSq, 2
clr,3
comdist.par,3
comdistnt.par,4
community\_rrna, 5
gg_13_5_16S, 5
neutral.fit,6
\texttt{neutral.rand}, \mathbf{6}
proportionality, 7
ps_euler, 8
ps_pheatmap, 9
ps_prune, 10
ps_refactor, 10
ps_tax_clean, 11
ps_venn, 11
rarefy_rrna, 12
rcurve, 13
ses.comdist,14
ses.comdist2, 15
ses.comdistnt, 17
ses.comdistnt2, 18
ses.mntd.par, 20
ses.mpd.par,21
ses.permtest, 23
ses.UniFrac, 24
UniFrac.multi, 25
WdS.test, 26
```

28